

CLEAN UTILITIES Purified Water – PW - WFI from sanitary Conception to Validation

EXPERT SANTÉ CANADA MAPAO

PBE-Expert Inc – CANADA Accredited training organisation CPMT #0059104 Qualified MAPAQ Consultant To the measure 2 of the "Levier" program

PBE, Training Company Agreement CPMT #0059104

Québec	CERTIFICAT D'AGRÉMENT	Loi favorisant le développement o des compétences de la main-d'oe	
Titulaire : PBE, PHARMA BIO EXPERT INC	c.	Numéro d'agrément :	005910
NEQ : 1168916956 Catégorie d'agrément : Organisme formate	CHAMPS PROFESSIONNELS	Date de délivrance : Date d'échéance :	6 février 20 5 février 20
01 Administration et commerce 03 Alimentation, hôtellerie et tourisme 06 Chimie et biologie			
	Par: Dalles	the Benjeur	
Presenter serverite Entroposit (12-2010)	Le 7 février 2018	t valide en fonction des documents soumis à la	
MALARY DIR-PORT	Le 7 février 2018 La délivrance du certificat e Commission des partenaires	t valide en fonction des documents soumis à la	
Mexana des andia	Le 7 février 2018 La délivrance du certificat e Commission des partenaires	t valide en fonction des documents soumis à la	p

Training goals / Clean Utilities Purified Water PW

Part 1 – Which water type for which pharmaceutical use? Part 2 – Which technology?

- a. Pretreatment
- b. Treatment
- c. Polishing (Final treatment)
- d. Storage tank
- e. Distribution loop
- Part 3 Sanitary Design (ASME-BPE) of critical equipment
- Part 4 Equipment selection
- Part 5 Control & Instrumentation
- Part 6 Commissioning FAT, SAT, & IQ, OQ Validation
- Part 7 Quiz evaluation

Training goals / PW – Part1

- 1. Introduction to pharmaceutical water uses.
- 2. What is the first step for a PW project?
- 3. What are the user requirement specifications (URS)?
- 4. Pharmaceutical water sources and types

- 5. Step 1 : Water pretreatment
- 6. Water for GMP Applications
- Criteria for Purified Water in the United States Pharmacopea (USP) versus the European Pharmacopea (PhEur)
- 8. Group quiz

Training goals / PW – Part1

- 1. Temperature impact on conductivity.
- 2. Pharmaceutical water sources and types.
- 3. Water types for:
 - a. Pharmaceutical processes
 - b. Laboratories

- 4. References EMA, ISPE :
- 5. Which water for which process according to the FDA and EMA?
- 6. Active Pharmaceutical Ingredients (API), sterile and non sterile medication, injectable, Water for Injection (WFI), final rinse ?
- 7. Group exercise
- 5. Decision diagram

Purified Water (PW) unit in 9 points

- 1. What is a PW unit?
- 2. Benefits of a PW unit?
- 3. Why use PW?
- 4. How does a PW unit work?
- 5. PW unit details
- 6. PW unit types
- 7. EDI vs PW !
- 8. Monitoring, adjusted or not in temperature
- 9. Design considerations

• • • • • • • 23/05/2018

E

- 1. Which water analysis are to be provided?
- 2. Which quality needs to be obtained depending on sampling points?
- 3. Standards, alert level, level of action
- 4. What are the quantitative and evolutive needs (instant maximum, daily, weekly, seasonal,...)
- 5. Which are the applicable regulations?
- 6. What utilities are available (type, specifications) ?
- 7. What are the implementation constraints? Equipment purchase sources?

7 • • • • • • 23/05/2018

EXPERT SANTÉ CANADA MAPAQ

Which design for which usage?

- 8. **Defining sampling points:**
 - a. Manual?
 - b. Automatic ?
 - c. Localization ?
 - d. Sampling flows ?
 - e. Priorities ?
 - f. Pressure ?
 - g. Temperature ?...

- 9. What path to use for distribution?
- 10. What support?
- 11. What type of insulation ?
- 12. Which slopes and towards which equipment?
- 13. What drainability?
- 14. What velocity or turbulence?
- 15. What type of disinfection/sanitation?

16. What automation for implementation?

17. What are the Critical Process Parameters (CPP)?

18. Which certificates to produce:

- a. Factory calibration ?
- b. On-site calibration ?
- c. Measuring chain?
- d. Filter integrity tests ?
- e. Passivation ?
- f. Orbital welding ?

19. What environmental constraints ?

20. What security constraints?

- 21. What maintenance constraints?
 - a. How?
 - b. Frequencies ?
 - c. Preferred brands ?...

Which design for which usage?

- 21. Deadline?
- 22. What schedule ?
 - a. for service offer handing over ?
 - b. for the exécution ?

22. What documents are expected ?

- a. Plans and diagrams,
- b. URS, technical files,
- c. Maintenance records,...?
- d. Who provides the As Built ?
- 23. What qualifications are expected ?
- 24. What are the expected performance: CPP, Alerts and Alarms thresholds/ranges ?
- 25. What is the training for factory, operation, qualification and maintenance staff ?

Regulatory framework: Cleaning (BPF/cGMP)

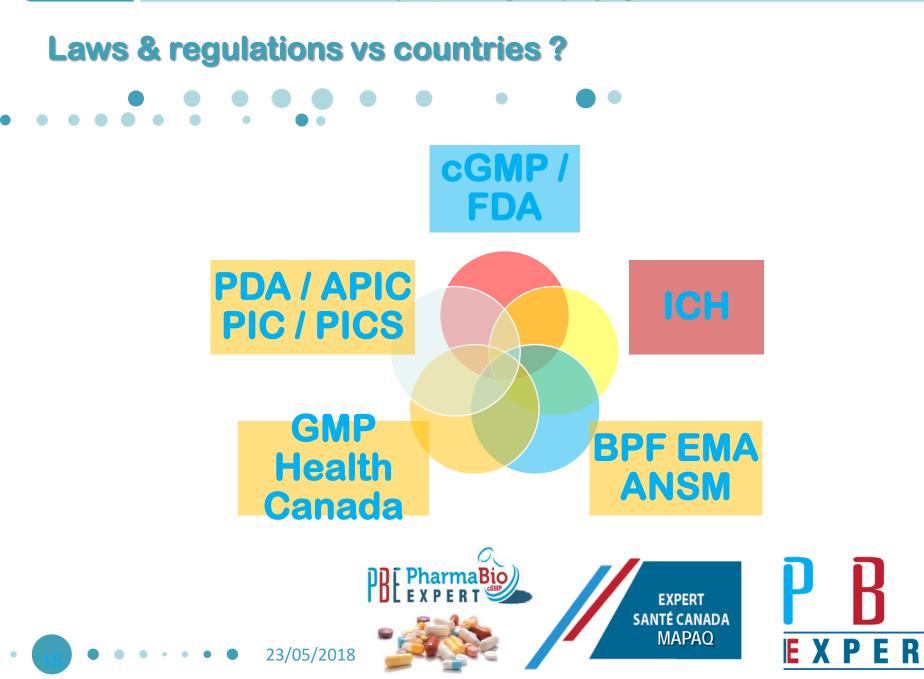
Regulatory framework: (BPF/cGMP)

World Health Organization (WHO)

- <u>http://www.who.int/medicines/</u> <u>areas/quality_safety/quality_assu</u> <u>rance/production/en/index.html</u>
- EU EMEA
 - <u>http://ec.europa.eu/enterprise/</u> pharmaceuticals/eudralex/vol4_e <u>n.htm</u>

United States – FDA 21 CFRs

http://www.fda.gov


Canada – Health Canada

- <u>http://www.hc-sc.gc.ca/dhp-mps/compli-conform/gmp-bpf/index-eng.php</u>
- ICH = International Conference on Harmonization

http://www.ich.org/products/guidelines/ quality/quality-single/article/goodmanufacturing-practice-guide-foractive-pharmaceutical-ingredients.html

Normative requirements

- - ✓ European Pharmacopoeia (Ph.Eur.)
 - ✓ French Pharmacopoeia (Ph.F.)
 - ✓ Pharmacopoeia Internationalis (Ph.I.)
 - ✓ The British Pharmacopoeia (B.P.)
 - ✓ The Canadian Formulary (C.F.)
 - ✓ The National Formulary (N.F.)
 - ✓ The Pharmaceutical Codex: Principles and Practices of Pharmaceuticals
 - ✓ The United States Pharmacopoeia (U.S.P.)

Codes & Standards requirements

AABC : Associated Air Balance Council ANSI American National Standards Institute ASHRAE American Society of Heating Refrigerating and Air conditioning Engineers ASME : American Society of Mechanical Engineer BPE ASME Bioprocessing Equipment (American Society of Mechanical Engineers) **ASTM2500** American Standard of Testing Materials CRN

CSA

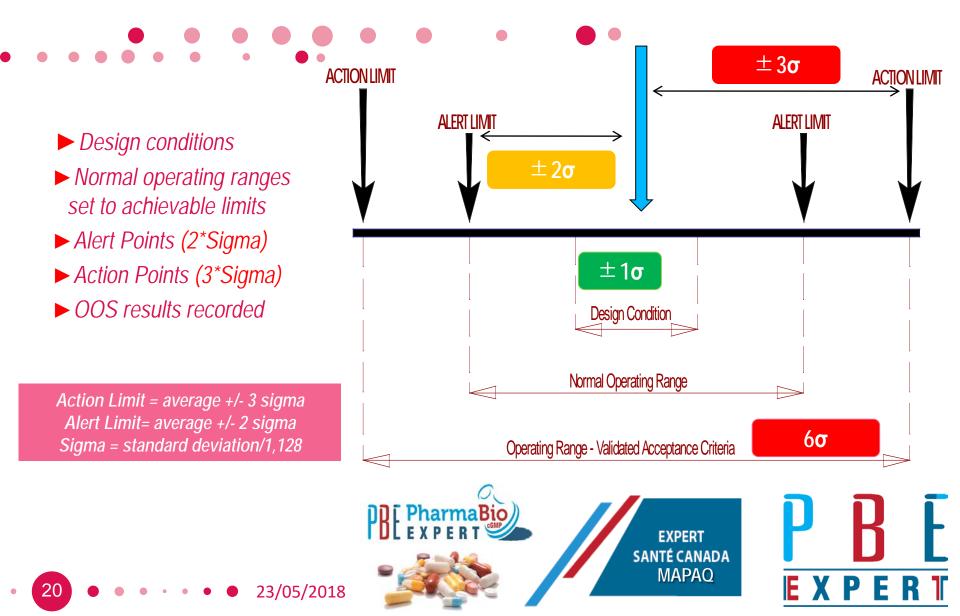
- Canadian Registration Number (Pressurized equipment)
- Association Canadienne de Normalisation

Requirements of Codes & Standards

- ISA
- NABC
- NEBB
- NFPA
- NEMA
- OSHA
- NIST
- SMACNA

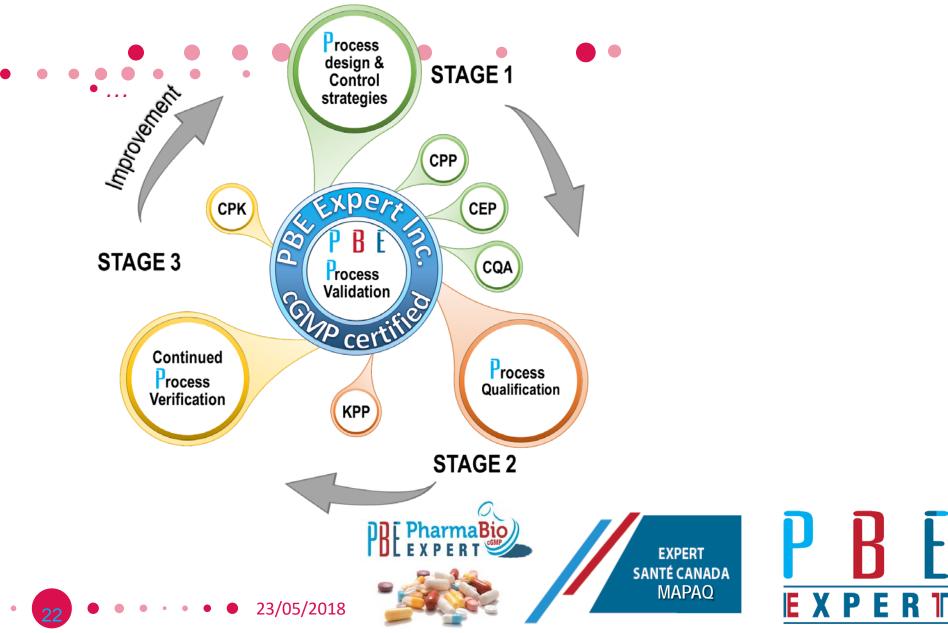
ATEX

- : Instrument Society of America
- : National Air Balance Council
- : National Environmental Balancing Bureau
- : National Fire Protection Association
- : National Electrical Manufacturers Association
- : Occupational Health and Safety Administration
- : National Institute Of Standards and Technology
- : SMACNA Sheet Metal and Air Conditioning Contractors' National Association
- : Explosive Atmosphere



URS User requirements Analysis

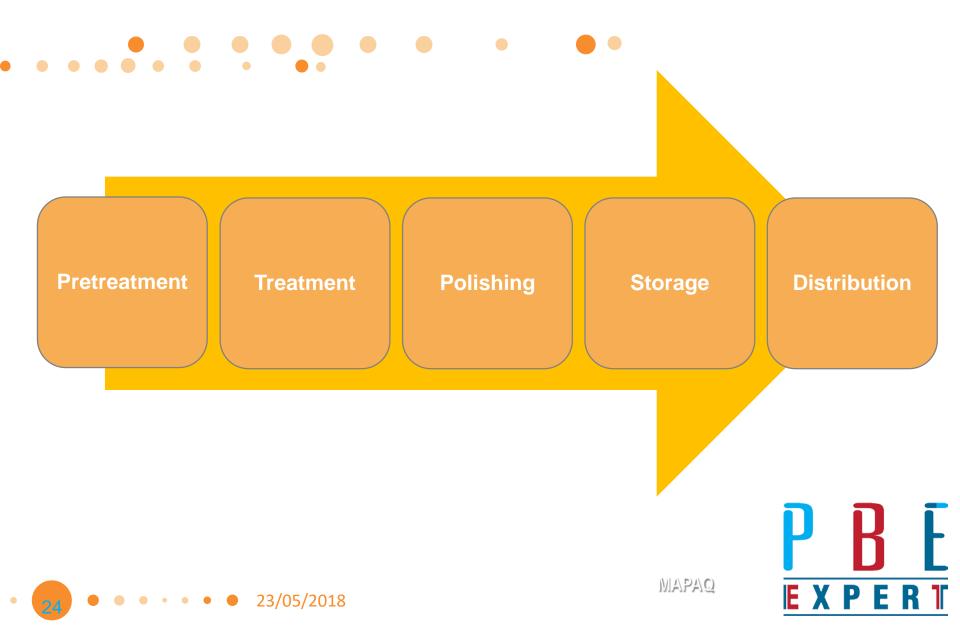
URS : DESIGN APPROACH


URS : 1- Performance Criteria:

- 1. Standards and Regulatory Framework
- 2. Performance Criteria
- 3. Operation Specifications
- 4. Installation Specifications

- 5. Simple process diagrams
- 6. Rational & references
- 7. Tests to plan
- 8. Execution in:
 - a. IQ/OQ/PQ Validation
 - b. and/or in Commissioning: FAT, SAT.

URS : LIFE CYCLE APPROACH – PROCESS VALIDATION



Standard process for removing Contaminants in water

Standard process for removing Contaminants in water

Standard process for removing Contaminants in water 1- Pretreatment steps

- 1. Primary filtration
- 2. Softening
- 3. Sanitation
- 4. Controls

Standard process for removing Contaminants in water 1- Pretreatment steps

- 1. Control and reduce the content of chemical & bacteriological products in accordance with acceptable concentrations (USP, PhEur, etc.).
- 2. Control and reduce microbial growth.
- 3. Systems must be properly validated.
- 4. Parenteral water should be free of pyrogens or endotoxins (USP, PhEu threshold limit).
- 5. Appropriate specifications and disinfection and periodic tests are required.

PW & WFI vs CPP according to USP & PhEu

23/05/2018

СРР	WFI	USP Reference	PW	USP Reference	PhEu	PhEu Référence
Feed	Treated water	USP <1231>	Potable water	USP <1231>	Potable water	EP 07/2002:0008
Conductivity	≤ 1.1 μS/cm at 20°C ou ≤ 1.3 μS/cm at 25°C	USP <645>	≤ 1.3 µS/cm at 25° C	USP <645>	≤ 4.3 μS/cm at 20°⊂C	EP 07/2002:0008
TOC	≤ 500 ppb	USP <643>	≤ 500 ppb	USP <643>	≤ 500 ppb	EP 07/2002:0008
Bacteria	≤ 0.10 UFC/mL	USP <1231>	≤ 100 UFC/mL	USP <1231>	≤ 100 UFC/mL	EP 07/2002:0008
Endotoxin	< 0.25 EU/mL	USP <1231>	N/Ap.	N/Ap.	< 0.25 EU/mL (note 1)	EP 07/2002:0008
Nitrates	N/Ap.	N/Ap.	N/Ap.	N/Ap.	≤ 0.2 ppm	EP 07/2002:0008
Heavy metals	N/Ap.	N/Ap.	N/Ap.	N/Ap.	≤ 0.1 ppm	EP 07/2002:0008
Aluminium	N/Ap.	N/Ap.	N/Ap.	N/Ap.	≤ 10 μg/L (note 1)	EP 07/2002:0008
Particles 0.22 µm	N/Ap.	N/Ap.	N/Ap.	N/Ap.	N/Ap.	N/Ap.
Pyrogens	N/Ap.	N/Ap.	N/Ap.	N/Ap.	N/Ap.	N/Ap.
Note 1: Applicable if water is used in the manufacture of dialysis solutions						

MAPAQ

3- What usage for which Process- Water types

3- What Usage for Which Pharmaceutical Process?

PharmaBio

Table 6-1 General Guidance Only

System	Type: Process (P) or Process Support (PS)	GMP Important	Documentation/ Commissioning	Filter Requirements (Baseline)
Purified Water and WFI	Ρ	Yes	Enhanced	N/A
Clean Steam	Р	Yes	Enhanced	N/A
Nitrogen and other Process Gases	Ρ	Yes	Enhanced	Endpoint 0.2µm for sterility 5µm for pre- filtration
Instrument Air	PS	No	GEP (= Good Engineering Practice)	N/A
Breathing Air	PS	No	GEP	N/A
Heating/Cooling	PS	No	GEP	N/A
Process Vacuum	Ρ	Yes	Enhanced	See specific equipment item
Potable Water	PS	No	GEP	N/A
Mechanical Seal Fluids	Depends on use	Depends on use	GEP	N/A
Chilled Water	PS	No	GEP	N/A

ISPE vol.3, p79

23/05/2018

3- Water types for Laboratories and Hospitals

- 1. Potable water (EPA, Drinking Water Regulations)
- 2. Softened water (CLSI Type I, II, III)
- 3. Dionized water (CLSI Type I, II, III)
- 4. Reverse osmosis water (CLSI Type I, II, III)
- 5. Purified water
- 6. Water to feed the pure steam generators
- 7. Water to produce clean steam (HVAC, surgery rooms, ...)
- 8. Water for cooling autoclaves
- 9. Water for final rinse
- **10. WFI**

3- Pharmaceutical water types

- 1. Undrinkable, industrial.
- 2. Drinkable.
- 3. Purified water (USP / PhEu).
- 4. Feed water for pure steam generators
- 5. Water to produce clean steam (HVAC, clean rooms, ...)
- 6. WFI.
- 7. Sterile WFI / USP.
- 8. Sterile water for inhalation / USP.
- 9. Bacteriostatic WFI / USP.
- 10. Purified sterile water for irrigation / USP,

3- Which water for which pharmaceutical process ?

- 1. Added as an ingredient to the pharmaceutical process.
- 2. Process support utility (Buffer / Media tank, Biofermentor, Formulation, etc.).
- 3. Initial / final rince: CIP. Washing machines, ...
- 4. Produce Pure Steam, Clean Steam, WFI.
- 5. Pharmaceutical systems clean support utilities :
 - a. Autoclaves.
 - b. **PAV liquid ring.**
 - c. Misting

3- Which pharmaceutical water for which process ?

- 1. Sterile drugs
- 2. Non sterile drugs
- 3. API production
- 4. Medical product manufacturing that is not present in the final formulation
- 5. Equipment and AC cleaning / rinsing.

3- Which pharmaceutical water for which process ?

		• •	
Water specifications	USP FDA	PhEu EMEA	Comments
Acceptable WFI produced by			
WFI quality monitored by TOC			
Highly Purified Water (HPW)		P	
Endotoxin & Bioburden Control			
	DE Pharma DE E X P E R T	EXPER SANTÉ CAN	

PBE E X P E R T

MAPAQ

3- Which pharmaceutical water for which process ?

1- Sterile Medicinal Products

Sterile medicinal products	Minimum Acceptable quality of Water
Parenteral	
Ophthalmic	
Haemofiltration Solution	
Peritoneal Dialysis Solutions	
Irrigation Solutions	
Nasal / Ear Preparations	
Cutaneous Preparations	
• • • • • • 23/05/2018	EXPERT SANTÉ CANADA MAPAQ EXPERI

3- Which pharmaceutical water for which process ?

2- Non-Sterile Medicinal Products

Non-sterile medicinal product	Minimum acceptable quality of Water
Oral Preparations	
Nebuliser Solutions	
Cutaneous Preparations	
Nasal / Ear Preparations	
Vagin Rectal / Vaginal Preparations	
PEE Pha 23/05/2018	ERT SANTÉ CANADA MAPAQ EXPERT SANTÉ CANADA MAPAQ

3- Water Used During the Manufacture of APIs

Type of manufacture	Product requirements	Minimum acceptable quality of water
Synthesis of all intermediates of API s prior to final isolation and purification steps	No requirements for sterility or apyrogenicity in API or the pharmaceutical product in which it will be used	
Fermentation media	No requirements for sterility or apyrogenicity in API or the pharmaceutical product in which it will be used	
Extraction of herbals	No requirements for sterility or apyrogenicity in API or the pharmaceutical product in which it will be used	

3- Water Used During the Manufacture of APIs

Type of manufacture	Product requirements	Minimum acceptable quality of water
Final isolation and purification	No requirements for sterility or apyrogenicity in API or the pharmaceutical product in which it will be used	
Final isolation and purification	API is not sterile , but is intended for use in a sterile , non-parenteral product	ē.

3- Water Used During the Manufacture of APIs

Type of manufacture	Product requirements	Minimum acceptable quality of water
Final isolation and purification	API is sterile and not intended for parenteral use	
Final isolation and purification	API is not sterile, but is intended for use in a sterile, parenteral product	
Final isolation and purification	API is sterile and apyrogenic	

Р

4- Water Used During Manufacture of Medicinal Products Which Is Not Present in the Final Formulation

Manufacture	Minimum acceptable quality of water
Granulation	
Tablet coating	
Used in formulation prior to non- sterile lyophilisation	
Used in formulation prior to sterile Iyophilisation	

5- Water Used for Cleaning/Rinsing of Equipment, Containers and Closures

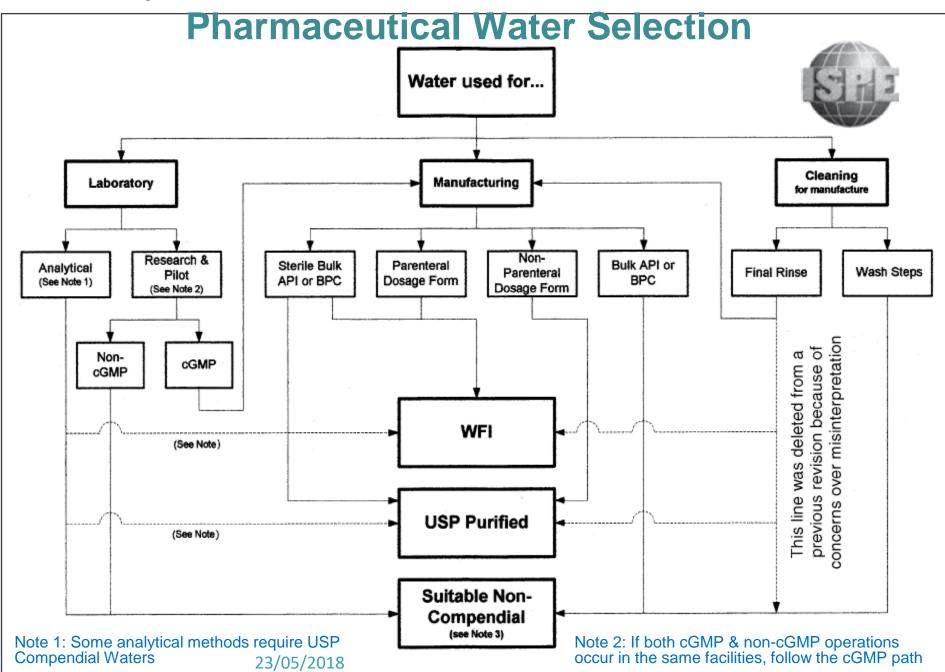
In general, the final rinse used for equipment, containers/closures should use the same quality of water as used in the final stage of manufacture of the API or used as an excipient in a medicinal product.

Cleaning / Rinsing of Equipment, Containers, Closures	5.	Minimum acceptable quality of water
Initial rinse	Intermediates and API	
Final Rinse	ΑΡΙ	
Initial rinse including CIP* of equipment, containers and closures, if applicable	-	

5- Water Used for Cleaning/Rinsing of Equipment, Containers and Closures

In general, the final rinse used for equipment, containers/closures should use the same quality of water as used in the final stage of manufacture of the API or used as an excipient in a medicinal product.

Cleaning / Rinsing of Equipment, Containers, Closures	J	Minimum acceptable quality of water
Final rinse including CIP* of equipment, containers and closures, if applicable	Pharmaceutical products – non sterile	
Initial** rinse including CIP* of equipment, containers and closures, if applicable	Sterile products	


5- Water Used for Cleaning/Rinsing of Equipment, Containers and Closures

In general, the final rinse used for equipment, containers/closures should use the same quality of water as used in the final stage of manufacture of the API or used as an excipient in a medicinal product.

Cleaning / Rinsing of Equipment, Containers, Closures	Product type	Minimum acceptable quality of water
Final*I** rinse including CIP* of equipment, containers and closures, if applicable	Sterile non-parenteral products	
Final** rinse including CIP* of equipment, containers and closures, if applicable	Sterile parenteral products	
L	PharmaBio	

• <u>2</u>3<u>2</u>05/2018

EXPERT SANTÉ CANADA MAPAQ Water Quality Decision Tree Good Design Practice for GMP Pharmaceutical Facilities, 2005

Table 9-1 Recommended Wat	ter Qualities for Process Steps ISPE vol.6, p127	EUROPEAN ASPECTS	
Water for:	Mammalian	Microbial	
Fermentation	Purified Water, Highly Purified Water ¹ , or WFI	Potable Water ⁶ , Process ³ , or Purified Water	
Harvest/Recovery and Initial Purification	Same water as used for Previous Step ²	Same water as used for Previous Step ²	
Purification Final	Purified Water ^{4,5}		
Cleaning First Flush			
Cleaning Final Rinse			

Notes for Table 9-1:

- Highly Purified Water is compliant with WFI product specification produced and/or distributed by alternative means. However, water must be heat treated to remove viruses.
- Switch to final water quality at purification step where process is no longer able to remove bioburden or pyrogen contamination.
- Process water can be prepared by a variety of means from storage of potable water to deionized (DI) or demineralized water.
- Purified water with endotoxins NMT 0.25 EU/ml and control of specified microorganisms (CPMP/QWP/ 158/01, May 2002).
- 5) Lower quality water may be used as appropriate for final dosage form.
- 6) Potable (drinking) water as defined by local rules. It must be monitored and controlled to a defined quality appropriate for the process.

Part 2 – Which Technology?

• • •

Part 2 – Which Technology?

23/05/2018

- **1. Pretreatment.**
- 2. Treatment.
- 3. Polishing (Final treatment).
- 4. Storage tank.
- 5. Distribution loop.

MAPAQ

Part 3 – Sanitary Design (ASME-GMP) of critical equipments

Health Canada & MAPAQ expert, Training Company Agreement CPMT #0059104 **Basic Sanitary Design in 11 points** 1. Absence 2. Reynolds number greater than_____ 3. Internal Roughness _____ 4. Drainability and minimal slope of _____% 5. Minimum amount of G_____, maximum amount of W_____ versus С 6. _____ valves between some equipment 7. _____ type connectors 8. _____ design tank 9. pressure 10. _____ temperature 11. _____ velocity an EXPERT SANTÉ CANADA MAPAO **49**/05/2018

Basic Sanitary Design in 10 points

Sanitary design of:Tanks, pumps, heat exchangers, filter, sprayer

28/05/2018

	Dead-leg: x diam & Surfaces	1.	and
3.	Junctions	_ and	agents Feed velocity ≥ m/s Loop return velocity≥m/s
	Quick joints & connections :	4.	Loop temperature ≤° C Pressure / Loop ≥
6.	Loop Pressure	6.	Slope ? %
	PBE	PharmaBi E X P E R T	EXPERT SANTÉ CANADA

MAPAQ

EX

Р

R

R F

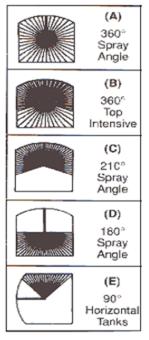
EXPERT

Part 4 – Equipment selection

6. Good Engineering Practice (GEP) / Spray balls

Static Sprayballs

Low Pressure – High flow


Advantages:

*No maintenance *Appropriate spray ball *Easy to use *Low mechanical power

Inconvenients:

*High water consumption *Low mechanical action *Higher cleaning time

(5

6. GEP / Spray balls

Sanitary Tube Size

Table SD-5 Flow Rates to Achieve 5 ft/sec (1.52 m/s)

EX

Р

E

R

Sumary Tabe Size						
0.D.		I.	D	Flow	/ Rate	Pressure
in.	mm	in.	mm	gpm	Lpm	(Bars)
0.5	12.7	0.37	9.4	1.7	6.3	-
0.75	19.1	0.62	15.7	4.7	18	-
1.0	25.4	0.87	22.1	9.3	35	-
1.5	38.1	1.37	34.8	23	87	-
2	50.8	1.87	47.5	42.8	162	-

6. GEP / Spray balls

Rotative Sprayballs

High Pressure – Low flow

Advantages:

*Low water usage *High mechanical action *Wide sprayed area

'Turbodisk'

Jets

23/05/2018

Slotted

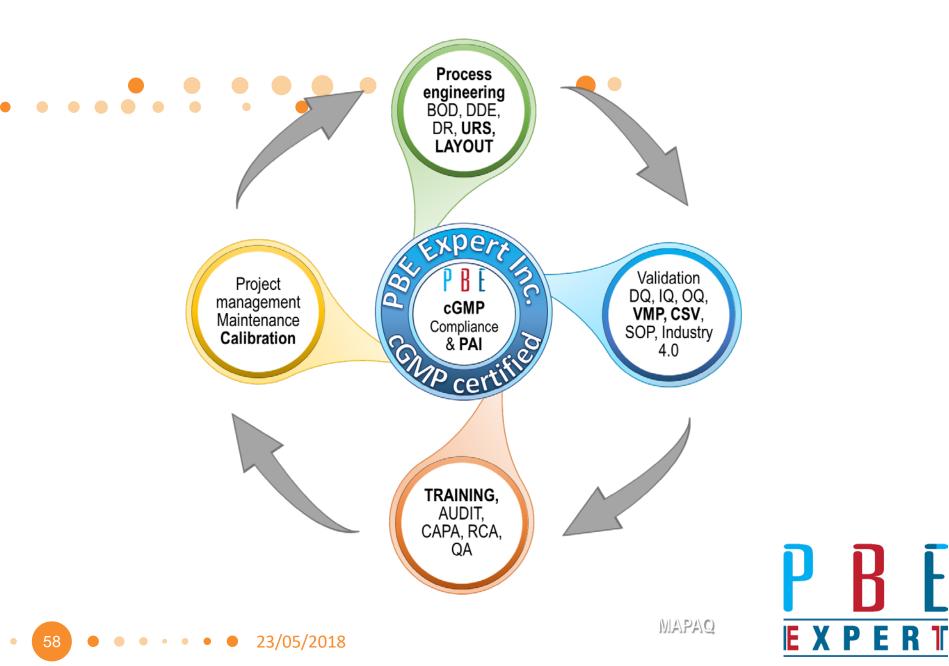
Disadvantages:

*Higher pump power *More difficult to use *Higher maintenance costs

EXPERT SANTÉ CANADA MAPAQ

Part 5 – Control and Instrumentation

Part 6 – Commissioning FAT, Sat, & IQ, OQ Validation



RF

EXPERT

μ

Part 7 – Quiz evaluation

EXPERT