

Risk Management - ICH Q9 - FMEA Applied to Validation

PBE, Pharma Bio Expert Inc
PBE-Expert Inc – CANADA
Training Company Agreement CPMT #0059104

PBE, Training Company Agreement CPMT #0059104

Agenda

- Definitions & applicable standards
- 2. History, cost and applications
- 3. Regulations
- Reminder of existing tools & methods
- 5. Risk Management process
- 6. Risk Assessment approach
- 7. Characteristics of the process
- 8. Operation and maintenance
- 9. Limits and scope

- 10. Process validation strategy (ies)
 - Goals
 - Principles
 - Tools
 - Methodology of a risk analysis relating to a manufacturing process (FMECA)
- 11. Conclusion
- 12. Case Study / Group
 - Purified Water System/ Pure steam generator
 - Cleanroom
 - Sterile filling line (Lyophilizer)
 - Tablet press

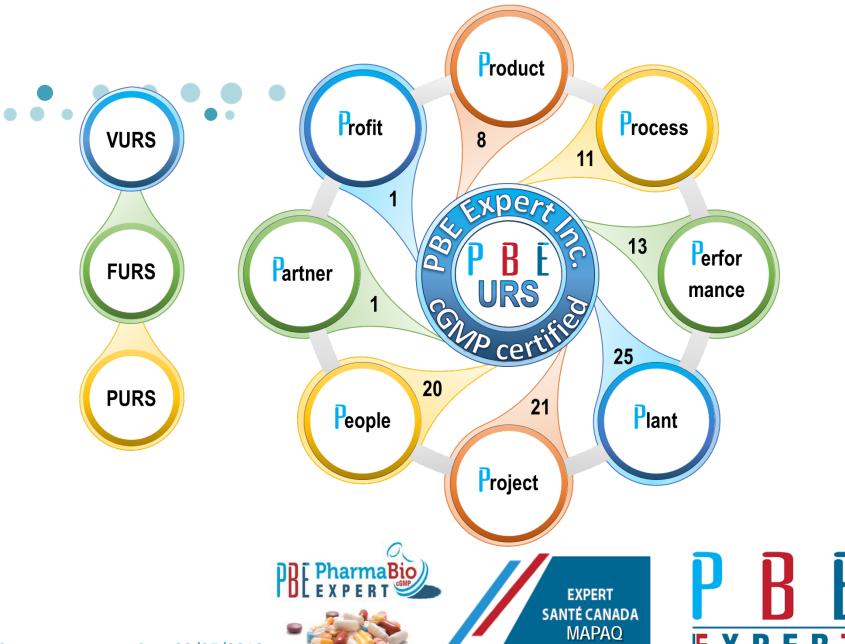
Training goals

Training goals

- The training aims to enable participants to transfer the theory of Risk Management (ICH Q9) to a practical reality in a pharmaceutical context.
- 2. After a reminder of regulatory requirements (ICH Q9, BP, ISPE):
- 3. The Risk Management approach will be supported and practiced through several examples worked in groups:
 - a. Purified water system.
 - b. Pure steam generator.
 - c. Cleanroom.
 - d. Sterile filling line (Lyophilizer)
 - e. Tablet press.

C & Q

Name of a person from the departments below


C&Q jointly supported by:

- QA,
- Engineering,
- Automation / IT.

MAPAQ

23/05/2018

Regulatory framework

Regulatory requirements

FDA, Guide to Inspection for Validation of Cleaning Processes, 1993

FDA CDRH Guidance for Sterilants & Disinfectants, 1/3/00

ICH Q9, GMP for Pharmaceutical Active Ingredients

ASTM E2500 Standard Guide for Specification, Design, and Verification of

Pharmaceutical and Biopharmaceutical Manufacturing Systems and Equipment

FMEA: MEC 763, Chapter 7 L'AMDEC. (Oct 2001)

ISPE, vol. 7, Risk Based Manufacture of Pharmaceutical Products (p.89-94), Good

Practice Guide_HVAC, Appendice 10 @ 14

Quality risk management (ICHQ9).....237

8. References

- ICH Q8 Pharmaceutical development.
- 2. ISO/IEC Guide 73:2002 Risk management Vocabulary– guidelines to be used in the standards.
- 3. ISO/IEC Guide 51:1999 Aspects related to security- guidelines to be included in the standards.
- 4. Process Mapping by the American Productivity & Quality Center, 2002, ISBN 1928593739....

Quality risk management (ICHQ9).....237

8. Références

- 5. IEC 61025 Fault Tree Analysis (FTA).
- 6. IEC 60812 Analysis Techniques for system reliability—Procedures for failure mode and effects analysis (FMEA).
- 7. Failure Mode and Effect Analysis, FMEA from Theory to Execution, 2nd Edition 2003, D. H. Stamatis, ISBN 0873895983.

Quality risk management (ICHQ9).....237

8. Références

- 8. Guidelines for Failure Modes and Effects Analysis (FMEA) for Medical Devices, 2003 Dyadem Press, ISBN 0849319102.
- 9. The Basics of FMEA, Robin McDermott, Raymond J. Mikulak, Michael R. Beauregard 1996, ISBN 0527763209.
- WHO Technical Report Series No 908, 2003, Annexe 7 Application of Hazard Analysis and Critical Control Point (HACCP) methodology to pharmaceuticals.
- 11. IEC 61882 Operability and risk Analysis (HAZOP).

Quality risk management(ICHQ9).....237

8. Références

ISO 14971:2000 – Application of risk management to medical devices.

ISO 7870:1993 - Control charts.

ISO 7871:1997 – Cumulative sums charts.

ISO 7966:1993 – Control charts for acceptance.

ISO 8258:1991 - Shewhart control charts.

What is Total Quality Control ?; The Japanese Way, Kaoru Ishikawa (Traduit par David J. Liu), 1985, ISBN 0139524339.

Risk analysis: Application

- Define critical product attributes and control of critical processes (Process Capacity) to ensure:
- SAFETY, PURITY, EFFICACY, QUALITY / (ICH)
- Design "Quality" into processes (QBD)
- Science-based risk management
- Real time QA

C-GMP / ICH-Guidelines

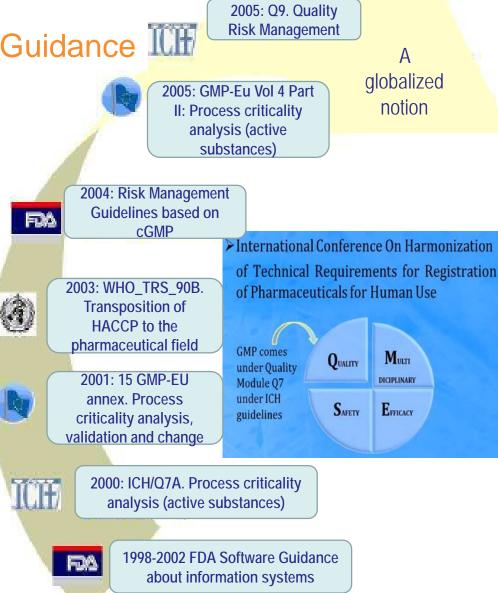
Some definitions

FMEA: Failure Mode Effects Analysis

 $\mathsf{FMECA}: \mathsf{Failure} \ \mathsf{Mode} \ \mathsf{Effects} \ \mathsf{and} \ C\mathsf{riticality} \ \mathsf{Analysis}$

Regulatory requirements ICH Q9

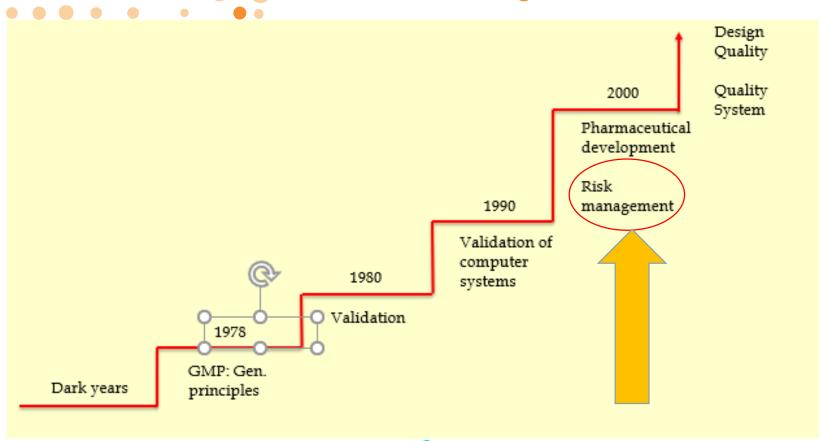
Regulatory requirements


- □ Risk analysis is a regulatory requirement for validation (EU-GMP annex 15).
- □ Is a requirement of the quality management system(ICH & FDA):
 - A global approach to Risk Management: ICH Q9
 - A universal approach to Risk Assessment

Pharmaceutical reference regulation

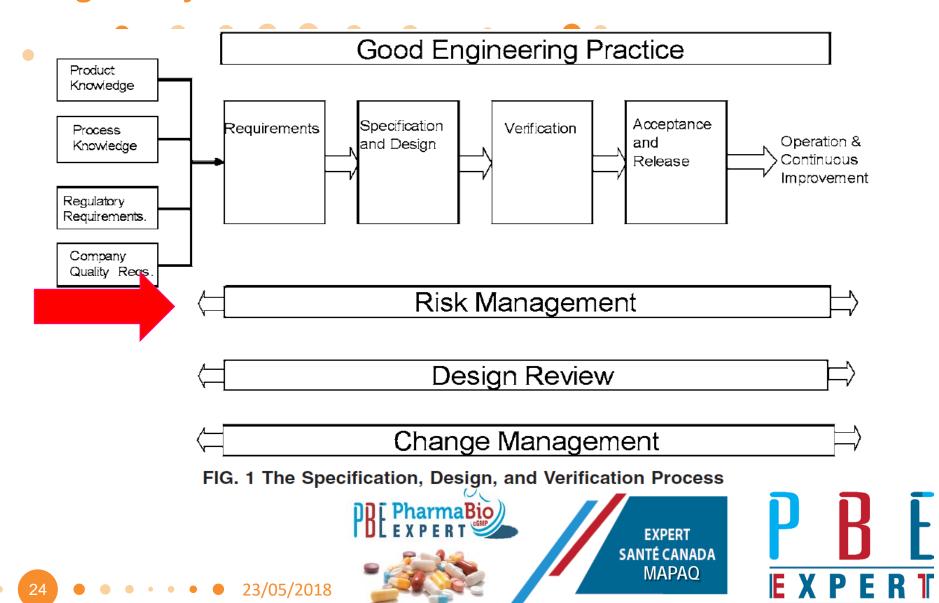
- ☐ International reference: WHO & ICH
- □ European reference: GMP-EU
- □USA reference: cGMP & FDA-Guidance IIIII
- ☐ Five fundamental GMP characteristics for the product
 - Identity
- Security
- Purity
- Efficiency
- Quality

Chronology

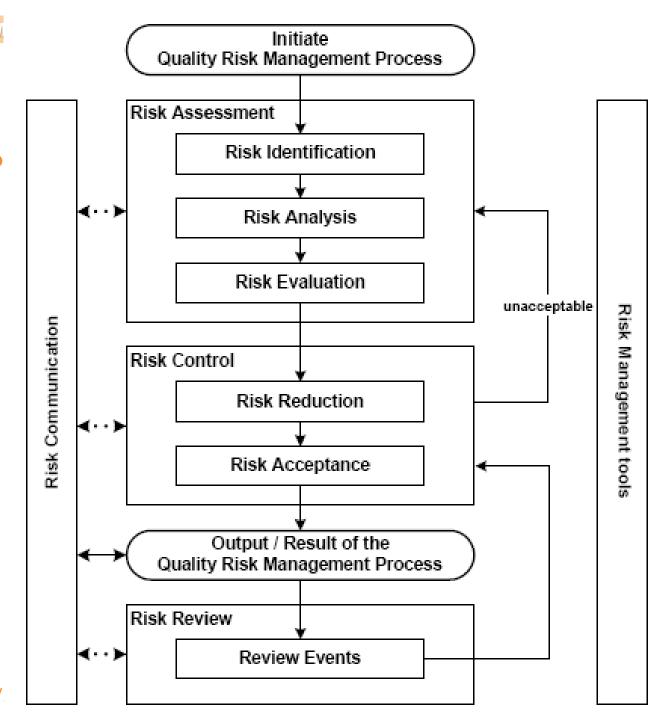

FDA - Software Guidance – (draft en 1998 . final january 2002)

- □ "This guidance recommends an integration of software life cycle management and risk management activities"
- ☐ Section 2 Risk Management Activities during the Software Life Cycle.
- ☐ First concept of Risk Management in the pharmceutical industry related to information systems.

History of GMPs / 30 Years



Scenario and potential opportunities for risk reduction (ANSM-Part 3)


ANNEX 1...Improving scientific approaches to risk

Scénario	Opportunités potentielles
1. Satisfaire aux exigences BPF	Status quo
2. Démontrer un système qualité pharmaceutique efficace, incluant une utilisation efficace des principes de management des risques qualité (exemples : ICH Q9 et ICH Q10).	Augmenter l'utilisation des approches basées sur le risque pour les inspections réglementaires.
3. Démontrer la compréhension du produit et du procédé, incluant une utilisation efficace des principes de management des risques qualité (exemples : ICH Q8 et ICH Q9).	Faciliter les évaluations scientifiques de la qualité pharmaceutique ; permettre des approches innovantes pour la validation du procédé ; mettre en place la libération paramétrique des lots.
4. Démontrer la compréhension du produit et du procédé et l'efficacité du système qualité pharmaceutique, incluant une utilisation efficace des principes de management des risques qualité (exemples : ICH Q8, ICH Q9 et ICHQ10).	Augmenter l'utilisation des approches basées sur le risque pour les inspections réglementaires. Faciliter les évaluations scientifiques de la qualité pharmaceutique; optimiser les processus de changements post AMM basés sur une approche scientifique et sur le risque, afin de maximiser les bénéfices fournis par l'innovation et l'amélioration continue; permettre des approches innovantes pour la validation du procédé; établir la libération paramétrique des lots.

Regulatory and normative context / ASTM 2500-07

Overview of a classic quality risk management process 00-07

25 • • • • • • 23/05/

- 4.3 Risk assessment
- To help define precisely the risk(s) for evaluation purposes, three fundamental questions are often helpful:
 - 1.What can go wrong?

 IDENTIFICATION
 - 2.What is the PROBABILITY that it goes wrong?
 - 3. What are the CONSEQUENCES (severity)?

- Risk identification is the systematic use of information to identify hazards relating to risk or to the description of the problem.
- Identifying potential risk addresses the question « What can go wrong? », including the identification of possible consequences.

- Risk analysis is the estimation of the risk associated with the identified hazard.
- It is the qualitative or quantitative process of linking the probability of occurrence of damage and its severity.
- With some risk management tools, the ability to detect damage (DECTABILITY) also takes into account the risk estimate.

- Risk assessment compares the identified and analyzed risk against given risk criteria.
- Risk assessment takes into account the importance of data collected for each of the three questions.
 - 1. What can go wrong?
 - 2. What is the probability that it goes wrong?
 - 3. What are the consequences (severity)?
- Exemple 1 : PW
- Exemple 2 : GVP
- Exemple 3 : CIP

- The potential risk cans be expressed using qualitative adjectives such as
 - « high »,
 - « medium »
 - « low »,
- Which are defined as precisely as possible.

- Risk reduction = MITIGATION...
- Risk acceptance is a decision taken to accept a risk.

4- General quality risk management process

4.5 Communication relating to risk

LD.20. QUALITY RISK MANAGEMENT 5 Risk management methodology

- Quality risk management uses documented, exhaustive and reproductible methods to carry out the steps of the quality risk management process on:
 - the current knowledge base
 - on the evaluation probability
 - of occurrence of the severity and, sometimes
 - the detectability of risk.

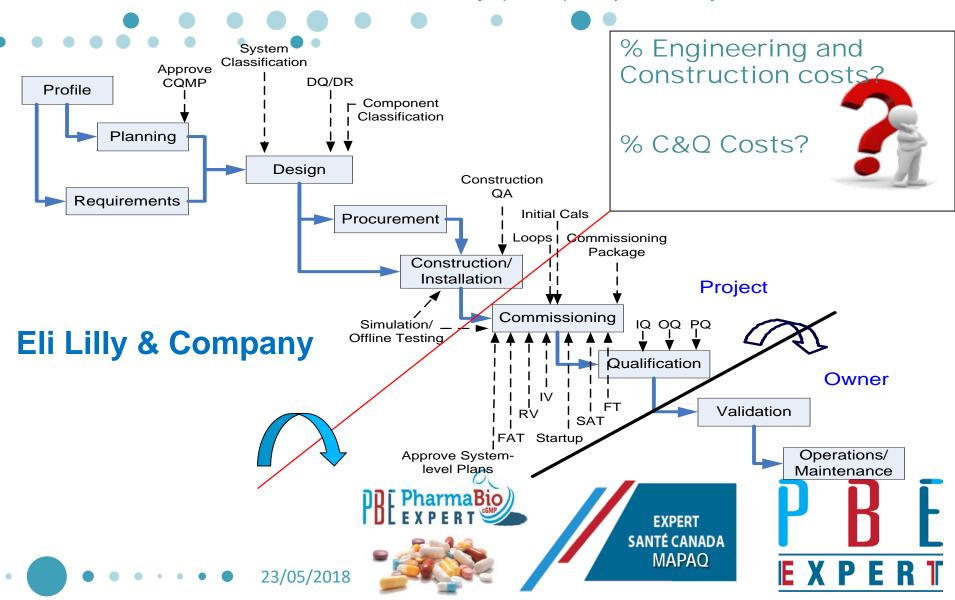
6- Integrating quality risk management into industry and regulatory activities

- Examples of operations for the industry and competent authorities (cf. Annex II):
 - Quality management.
- Examples for industrial activities(cf. Annex II) :
 - Development
 - Premises, equipment and infrastructures
 - Equipment management
 - Production
 - Control Laboratories and stability tests
 - Packaging and labeling.
- Examples of operations for competent authorities (cf. Annex II) :

Inspection and evaluation activities.

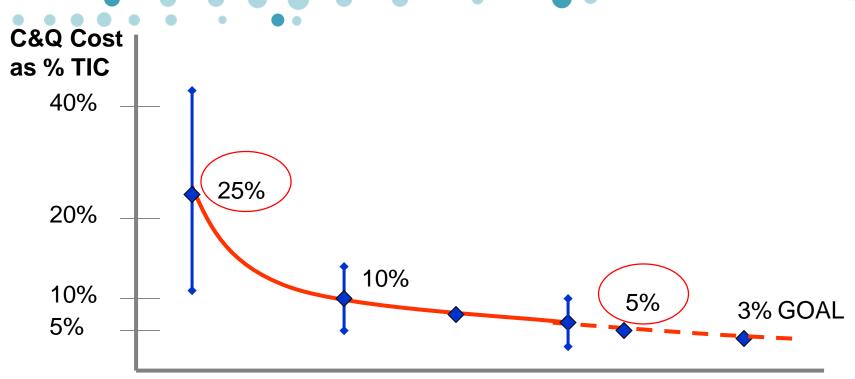
Origin of risk analysis?

Current state of risk management at multinationals


- **≻Eli Lilly & Company**
- > Abbott Laboratories
- >Pfizer

Fundamental C&Q Delivery Strategy

~ for Global Facilities Delivery (GFD) Capital Projects



Health Canada & MAPAQ expert, Training Company Agreement CPMT #005910

Eli Lilly & Company

Historical evolution of C & Q costs

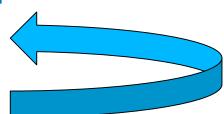
No C&Q prog 1998- 2001 Part. C&Q prog 2001-2003

Pharma Bio

Full C&Q prog 2002- pres.

ENGINEERING PHARMACEUTICAL INNOVATION

Eli Lilly & Company


Commissioning and Qualification Approach

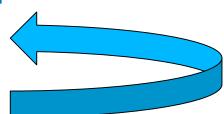
23/05/2018

Lilly C&Q Work Breakdown Structure

Lilly budgets/tracks C&Q expenses via 4 primary WBS categories:

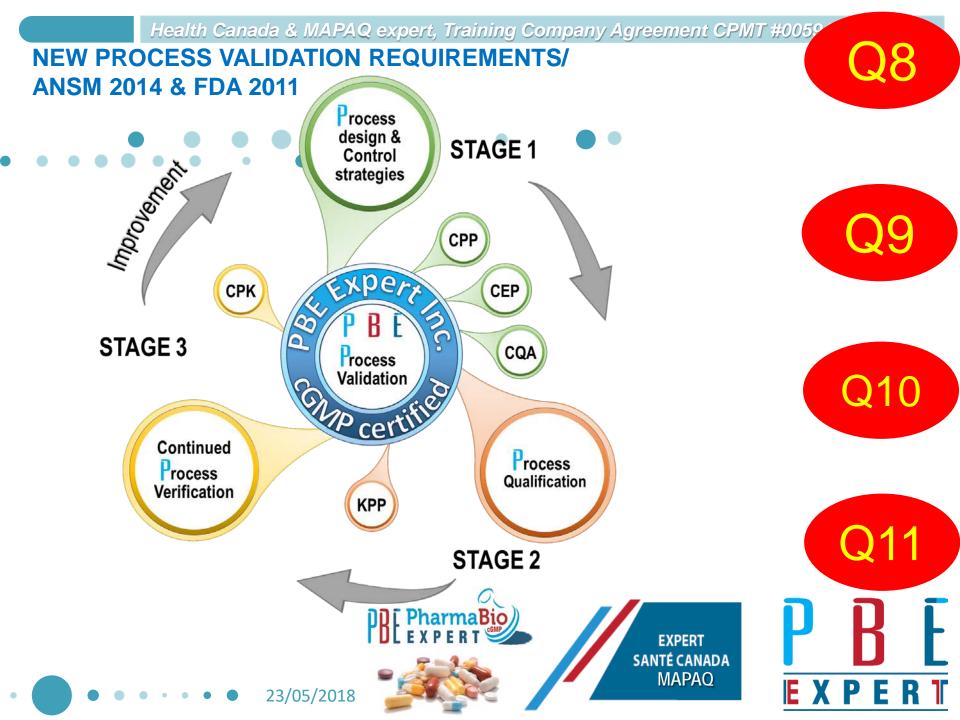
- 1. Planning & Design
- 2. Commissioning
- 3. Qualification
- 4. Administration

New C&Q Cost Data spec recently approved to provide guidance

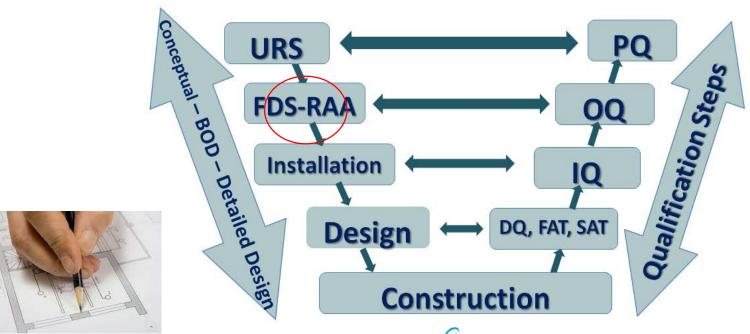


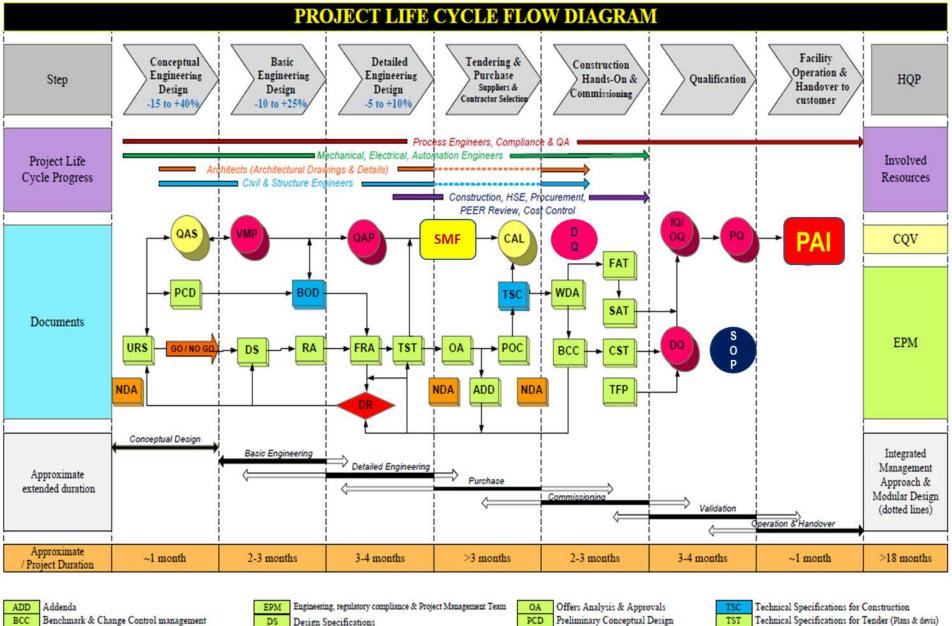
Lilly C&Q Work Breakdown Structure

Lilly budgets/tracks C&Q expenses via 4 primary WBS categories:

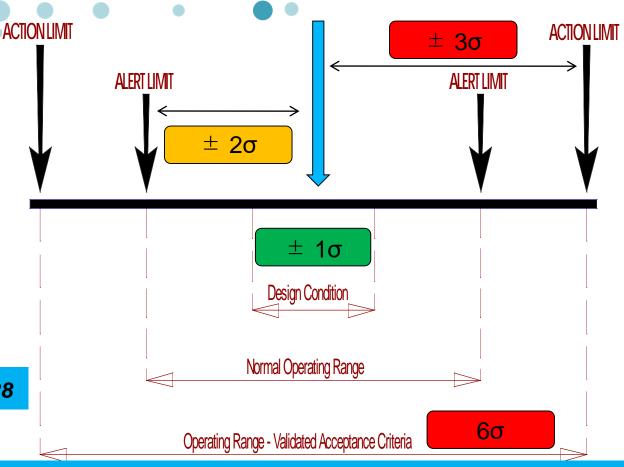

- 1. Planning & Design
- 2. Commissioning
- 3. Qualification
- 4. Administration

New C&Q Cost Data spec recently approved to provide guidance




Risk management V-Model

Integrated Life Cycle Project Management



	ADD	Addenda	EPM	Engineering, regulatory compliance & Project Management Team	OA	Offers Analysis & Approvals	TSC	Technical Specifications for Construction
	BCC	Benchmark & Change Control management	DS	Design Specifications	PCD	Preliminary Conceptual Design	TST	Technical Specifications for Tender (Plans & devis)
ì	BOD	Basis Of Design	FAT	Factory Acceptance Tests	POC	Purchase Orders & Contracts	URS	User Requirements Specifications
	CAL	Construction Authorization & Licenses, MENVIQ	FRA	Functional Risk Analysis	QAP/S	Quality Assurance Plan / Sheet (FAQ)	VMP	Validation Master Plan
	CQV	Commissioning, Quality Assurance & Validation Team	HCP	Handover to Customer of Project equipment Files	RA	Risk Assessment & Analysis	WDA	Workshop Drawings & Plans Approvals
	CST	Commissioning & Startup, SOP, Training,	HQP,	High Qualified People Non Disclosure Agreement	SAT	Site Acceptance Tests	827	
1	DQADR	Design Qualification & Design Review	43/1	Non Okcilosure Agreement	TFP	Technical & Functional Program/Plan	© Cop	yright, Canada – 2012 - www.pharmabioeng.com

C / O / V ranges OOS vs Actions / ICH Q9

- ► Design conditions (±1*Sigma)
- ► Normal operating ranges set to achievable limits
- ightharpoonup Alert Points (± 2 *Sigma)
- ightharpoonup Action Points (± 3 *Sigma)
- ► OOS results recorded
- CAPA / GAPA / RAPA

Sigma = standard dev./1,128

BPF/ANSM/04-12-2013 &p59,15. Class *C* and *D* monitoring should be conducted in accordance with the principles of quality risk management. The requirements and the *alert and action* thresholds depend on the nature of the operations carried out, but the recommended cleaning times must be respected.

Validation activities

- 1. Equipment design specifications
- 2. ZAC
- 3. List of reagents and cell cultures
- 4. Equipment preparation
- Cleaning/CIP, Passivation, Sterilization/SIP
- 5. Preparation of reagents
- 6. Production process (PFD, P&ID, ...)
 - sampling, controlled conditions...
 - Methodology, Analytical Tests & Methods

Approach to risk analysis

1- Criticality analysis determines which qualification tests to perform during validation

CONCEPTION

- Définition du système
- Spécifications
- Besoin utilisateur

INSPECTION PRE LIVRAISON

- Vérification de la documentation
- Audit du fournisseur
- Essais chez le fournisseur
- FAT

<u>SAT</u>

ESSAIS PRE VALIDATION

Déterminer/confirmer les paramètres acceptables

PRE VALIDATION

Approach to risk analysis

Any equipment defined as critical will have to pass all the qualification tests (IQ, OQ, PQ):

Installation
Qualification

Operational Qualification

Performance Qualification

Revalidation Program

VALIDATION

"Worst case "concept must be integrated

CASE STUDY 1 – Process Validation Strategy

Process Validation Strategy

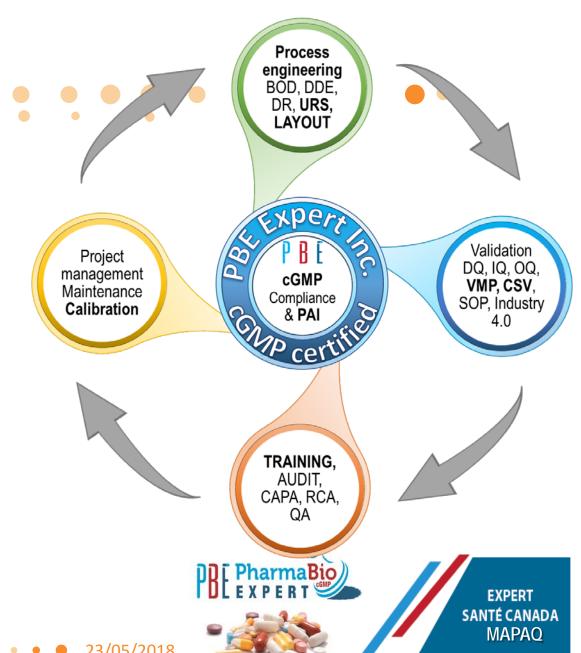
RISK ANALYSIS WORKSHOP CLEAN UTILITIES

RISK ANALYSIS WORKSHOP – CLEAN UTILITIES

CLEAN UTILITY	GROUPE N.
1- PW	GROUP 1
2- PURE STEAM	GROUP 2
3- CIP	GROUP 3
4- CLEAN COMPRESSED AIR	GROUP 4
5- WFI	GROUP 5

RISK ANALYSIS WORKSHOP LYOPHILIZER

RISK ANALYSIS
WORKSHOP
EXTREME
ENVIRONMENTS
LAYOUTS



RISK ANALYSIS WORKSHOP

PRODUCTION	GROUP N.
1- MONO-PRODUCT OSD / FL / FP / FSP	GROUP 1
2- MULTI-PRODUCTD OSD - RH < 15%	GROUP 2
3- MONO-PRODUC OSD – HP5	GROUP 3
4- MULTI-PRODUCTS OSD – HP5	GROUP 4
5- STERILE INJECTABLES	GROUP 5
6- STERILE INJECTABLE UNIT HP5	GROUP 6

8 • • • • • • 23/05/2018

(Canada) 1.514-616-2692

1.450-600-0790

(Morocco) 212-622-629-224

(Algeria) 213-561-234-333

(Tunisia) 216 - 96-751-330

www.pbe-expert.com

pbe@pbe-expert.com

Laval, Canada

